General instructions for Students: Whatever be the notes provided, everything must be copied in the Maths copy and then do the HOMEWORK in the same copy.

SOME MORE CRITERIA FOR CONGRUENCE OF TRIANGLES

ASA congruence rule -

Statement: Two triangles are congruent if two angles and the included side of a triangle

are equal to two angles and the included side of the other triangle.

Given: In \triangle ABC and \triangle DEF, \angle B = \angle E, \angle C = \angle DFE and BC = EF

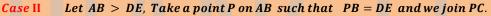
 $To Prove : \triangle ABC \cong \triangle DEF$

Proof: Case I Let AB = DE.

In \triangle ABC and \triangle DEF,

$$AB = DE$$
, $BC = EF$ and $\angle B = \angle E$

 $\therefore \triangle ABC \cong \triangle DEF$ (SAS congruence rule)



In \triangle PBC and \triangle DEF,

$$PB = DE$$
, $\angle B = \angle E$ and $BC = EF$

 $\therefore \triangle PBC \cong \triangle DEF$ (SAS congruence rule)

$$\therefore \quad \angle PCB = \angle DFE \quad (By \ C.P.C.T.)$$

But, $\angle C = \angle DFE$ (Given)

 \therefore $\angle PCB = \angle ACB$ This is possible only when A and P coincide.

$$\therefore PB = AB \implies AB = DE$$

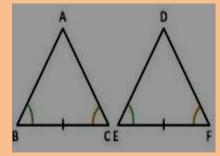
 $\therefore \triangle ABC \cong \triangle DEF$ (SAS congruence rule) **Proved**.

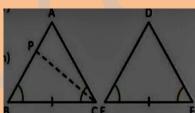
Case III Let AB < DE, we can take a point M on DE such that AB = ME and join MF.

Similarly repeating statements as given in Case II

We can conclude that AB = DE

 $\therefore \triangle ABC \cong \triangle DEF$ (SAS congruence rule) **Proved**.





AAS congruence rule -

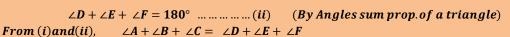
Statement: Two triangles are congruent if any two pairs of angles and a pair of

corresponding sides are equal.

Given: In \triangle ABC and \triangle DEF, \angle B = \angle E, \angle C = \angle F and AC = DF

 $To Prove : \triangle ABC \cong \triangle DEF$

(By Angles sum prop. of a triangle)



 $\therefore \angle A = \angle D \dots \dots (iii)$

(Given: $\angle B = \angle E$, $\angle C = \angle F$)

In \triangle ABC and \triangle DEF, $\angle C = \angle F$ (Given)

AC = DF (Given)

 $\angle A = \angle D$ By (iii)

 $\triangle ABC \cong \triangle DEF$ (By ASA congruence rule) Proved.

RHS congruence rule -

Statement : Two right triangles are congruent if the hypotenuse and one side of one

triangle are equal to the hypotenuse and one side of the other triangle.

Given: In two right – angled triangles \triangle ABC and \triangle DEF, \angle B = \angle E = 90°

BC = EF and AC = DF (hypotenuse)

 $To Prove: \triangle ABC \cong \triangle DEF$

Construction: Produced DE to M such that EM = AB. We join MF.

Proof: In \triangle ABC and \triangle MEF,

BC = EF (Given)

AB = EM (By Const.)

 $\angle B = \angle MEF$ (= 90°)

 $\therefore \triangle ABC \cong \triangle MEF$ (SAS congruence rule)

 $\therefore \angle A = \angle M$ and AC = MF (By C.P.C.T.) (i)

But AC = DF $(Given) \dots \dots \dots (ii)$

From(i)and(ii), DF = MF

$$\therefore$$
 $\angle D = \angle M \dots \dots \dots (iii)$ (\angle s opp. to equal sides are equal)

From (i) and (iii),
$$\angle A = \angle D \dots \dots \dots (iv)$$

Now,
$$\angle A = \angle D$$
, $\angle B = \angle E \implies \angle C = \angle EFD \dots (v)$

Now, In \triangle ABC and \triangle DEF,

$$BC = EF$$
 (Given)

$$AC = DF$$
 (Given)

$$\angle C = \angle EFD$$
 By (v)

$$\therefore \triangle ABC \cong \triangle DEF$$
 (SAS congruence rule) Proved.

EXERCSE - 10.2

Q.No.4 In the adjoining figure, AD is a median of \triangle ABC, BM and CN are perpendiculars drawn

from B and C respectively on AD and AD produced. Prove that BM = CN.

Solution: In \triangle BMD and \triangle CND,

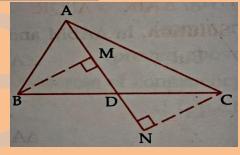
$$\angle BMD = \angle CND$$
 (= 90°)

$$\angle BDM = \angle CDN$$
 (vert. opp. $\angle s$)

$$BD = DC$$
 (AD is a median)

$$\therefore \triangle BMD \cong \triangle CND$$
 (AAS congruence rule)

$$BM = CN \qquad (By C.P.C.T.) \quad Proved.$$



Q. No. 10 ABC is an isosceles triangle with AB = AC. Draw $AP \perp BC$ to show that $\angle B = \angle C$.

To show : $\angle B = \angle C$

Proof: In \triangle ABP and \triangle ACP,

$$\angle APB = \angle APC$$
 $(= 90^{\circ})$ $[\because AP \perp BC]$

$$AB = AC$$
 (Given)

$$AP = AP$$
 (common)

$$\therefore \quad \triangle \ ABP \cong \triangle \ ACP \qquad \qquad (RHS \ congruence \ rule)$$

$$\angle B = \angle C \qquad (By C.P.C.T.) \quad Proved.$$

Q. No. 13(c) In the adjoining figure, BA \parallel DF and CA \parallel EG and BD = EC.

Prove that

(i) BG = DF

(ii) EG = CF

Proof: In \triangle BEG and \triangle DCF,

 $\angle B = \angle FDC$ [: $BA \parallel DF$, corres. $\angle s$ are equal]

 $\angle BEG = \angle C$

[\because CA || EG, corres.∠s are equal]

BD = EC

(Given)

BD + DE = EC + DE

[Adding both sides DE]

BE = DC

 $\therefore \triangle BEG \cong \triangle DCF$

(ASA congruence rule)

 $\therefore BG = DF$

(By C.P.C.T.)

And EG = CF (By C.P.C.T.) Proved.

HOMEWORK

EXERCISE - 10.2

QUESTION NUMBERS: 5, 6, 8, 9, 11, 13(a), (b) and 14.